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operators 
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Abstract - In this article is considered how to turn a n-bit increment operator into an O(n) cluster of controlled indexed 
computational operators CNOT, NOT and Toffoli. The incrementing cluster computational operators are an extension of 
the work of the author on the construction of controlled cluster computing NOT-s and the expansion of a NOT operator 
with many controls into a linear number of NOT-s with two controls. In order to reach the final goal, namely construction 
of NOT-s with many controls without an ancilla bit, is required the ability to perform large incrementations.   
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1. INTRODUCTION 
 
Similarly to the construction of an operator with controlled 
NOT is necessary an ancilla bit, in order to make the 
construction work, considering that the obstacle with the 
parity of the permutations applies again. But in this case it 
is not necessary to be used quantum elements, but normal, 
classical, reversible circuits. 
 
The cluster models of quantum computations are important 
both practically as well as conceptually. On the one hand, 
they lead to new experimental methods, on the other they 
offer further insight for undiscovered until now properties 
of the quantum information. The cluster models of 
quantum computations [1] not only provide a framework 
for description of interacting quantum fields [2], but they 
also offer additional practical models for realizations in the 
quantum computers, when a suitable circuit for qubit 
encoding [3, 4] is defined. Meanwhile, the cluster models of 
quantum computations [5] show that the implementation 
of very difficult to compute wave equations can be avoided 
only by applying single qubit measurements on suitably 
prepared multiple entangled states of the resources. The 
cluster models of quantum computations are a synthesis of 
these protocols [6.7]. In addition to its inherent conceptual 
circuit, the formalism represents a potential alternative for 
implementation of a quantum computer. The optical cluster 
models of quantum computations have different 
advantages over the discrete analogues [8]. Any such 
cluster state may be generated deterministically by offline 
extraction and passive linear optics [9]. In addition, 
through alternative methods, large cluster models of 
quantum computations can be generated simultaneously, 
using only one optical parametric oscillator (OPO), and not 
an interferometer [10]; certain such suggestions also have 
significant potential [11, 12]. These particularities of the 

cluster models of quantum computations show that they 
offer useful experimental model for the principles of 
computations on the basis of measurement [13]. The cluster 
models of quantum computations involving four optical 
modes are demonstrated experimentally [14,15,16]. In this 
article are upgraded the results achieved so far. 
 
 
2. INCREMENTATION 

 
The controlled cluster increment operator increases a value 
into an additional code, represented by a group of lines. 
For example, if a 3-bit cluster increment operator is applied 
to a 3-bit circuit, then the state of the circuit will be cycled 
from [Off, Off, Off] to [On, Off, Off] to [Off, On, Off] to [On, 
On, Off] to [Off, Off, On] to [On, Off, On] to [Off, On, On] 
to [On, On, On] and then back to [Off, Off, Off]. 
 
The implementation of a cluster increment operator out of 
NOT operators is easy, if the presence of a large number of 
controls is allowed. The increase is only spread, as 
carrying, through the bits, until it encounters an Off bit. 
Each bit flips only if all lower bits were On before the start 
of the incrementation. In other words, each line receives a 
NOT, which is controlled by all previous lines. 
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Figure 1 

 
The goal is to achieve the same, which make the above 
circuits, but without using more than two controls on any 
NOT and without using more than O(n) NOT-s. 
 
At first glance the most easy thing is to apply the 
construction with large controlled cluster NOT-s [16]. 
Unfortunately, since this construction requires O(n) 
operators per each controlled cluster NOT, in the end a 
quadratic number of operators is needed (because 

). 
 
Similarly to the last time, the problem will be solved for 
different types of ancilla bits. There will be considered 
recordable ancilla bits (initially zero, allowed to end up as 
non-zero), zeroed ancilla bits (initially zero, required to end 
up as zero), as well as borrowed ancilla bits (with an 
unknown initial value, obliged to end up with the same 
value). The garbage ancilla bits will not be considered, 
because in this case they do not offer more benefits 
compared to the borrowed bits. 
 
Let's first focus on the cases with a single ancilla bit. 
 
Single ancilla bit 
If there is a circuit with n+1 lines with n incrementing lines 
and one ancilla line, the goal is the incrementation to be 
broken up into smaller operations. In this section is not 
necessary to get all the way to the operators of Toffoli. 
Instead, the size of the operations simply have to be 
reduced. Once the operations are small enough, 
possibilities open up because bits, not used by an operation 
can be borrowed, as ancillary for the relevant operation. 
 
The first case for consideration is when the single ancilla bit 
is recordable. The top lines, which store the low bits of the 
number for incrementation may be incremented without 
depending from the bottom lines in any way. But the 
bottom lines, which store the high bits must be 

incremented only when all top lines are On. The bottom 
lines, depending from n/2 top lines, can be avoided, by 
storing the intersection of these lines in the ancilla bit. In 
this way the bottom incrementation needs only one control: 
 

 
Figure 2 

 
It is possible to absorb the single additional control into the 
increment cluster operator. The controlled cluster 
increment operator is equivalent to an increment operator 
with a control line as the new lowest bit, with the exception 
that the final NOT on the low bit is missing. Such an 
absorbing control is a matter of subsequent switching of the 
former control line: 

 
Figure 3 

It should be noted that the absorbed control bit is treated as 
the low bit, even if the absorbed line is in "wrong" position. 
Either the control bit must be swapped in the correct 
position, or a custom restructured cluster increment 
operator will be needed. 
 
The next event for consideration is with a single zeroed bit. 
Everything that is needed here, is to take the solution from 
the case with the recordable bit and to be canceled the 
effects on the ancilla bit. This is a simple addition to the 
circuit, because in reality there is only one effect, and it is 
easily reversible: 
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Figure 4 

 
The last case with a single ancilla bit is the case with the 
borrowed bit. This time the solution is much more 
complicated. 
 
In the last article of the author [16] was used the detection 
of switching, when working with garbage and borrowed 
bits. There a self-undoing operation was repeated twice, 
stated by the ancilla bit, so that the operation would undo 
itself, unless the bit is not switched. This does not work for 
the incrementation because the incrementing operation is 
not inverse to itself. 
 
The trick here is to use a bit-wise addition. When the bits of 
a number in an additional code X are switched, they toggle 
from storing of X to storing of 𝑋� = −𝑋 − 1(𝑚𝑜𝑑 2𝑛) 
If the complemented value is incremented, after which the 
complement is taken again, then finally is obtained 
𝑋� + 1������� = −𝑋 − 1 + 1��������������� =  −(−𝑋)− 1 = 𝑋 − 1 
In other words, the surrounding of an increment operator 
with NOT-s turns it into a decrementing! (and vice versa.) 
 

 
Figure 5 

The conversion from increment to decrement is useful 
because now an increment can be turned into the opposite 
of increment and this can be done conditionally. In this 
way can be made the detection of switching to work in this 
case: 
 

• Let's apply an incrementing and decrementing cluster 
operator to the high bits of the number. 

• Both operations are determined by the borrowed ancilla 
bit. 
 

• Each time the low bits are On, the ancilla bit and high 
bits are switched, before and after the decrement 
operator. 

o If the low bits are not On, nothing 
happens with the high bits. Either the 
borrowed ancilla bit is Off, which means 
that neither the increment nor the 
decrement cluster operator has an effect, 
or the borrowed ancilla bit is On and the 
increment and decrement operator are 
applied, by undoing one another. In both 
cases the network effect is not an effect. 
 

o If the low bits are On, then the NOT-s 
around the decrement cluster operator 
trigger and transform the decrementation 
into incrementation. If the borrowed 
ancilla bit is On, the increment cluster 
operator is triggered, and the operator, 
transformed from decrementing into 
incrementing, is not. Otherwise the 
borrowed ancilla bit is Off and only the 
operator, transformed from decrementing 
into incrementing, is triggered. 

 
So according to the above plan the high bits are 
incremented exactly once, when the low bits are On, but 
nothing happens with the high bits, if any of the low bits is 
Off. That is the demanded logic for the high bits. 
 
Below is represented the construction with a single 
borrowed bit for 8-bit numbers: 
 

 
Figure 6 

The above circuit uses another method, which was not 
mentioned. Because the switching of as many bits as 
possible is requested, when the first n/2 bits are On, but 
without paying the quadratic price for having n/2 
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controlled NOT-s with size n/2 is used a detection of 
switching, to spread the ancilla bit to all target bits. 
 
The constructions with a single bit, which were considered, 
allow the conversion of each n-bit increment cluster 
operator into two or three n/2-bit cluster increment 
operators, depending on the type of the used ancilla bit. 
These constructions can be applied over and over again, 
reducing the size of the remaining operators in half, until 
reaching simple, base cases, but that would not be 
asymptotically effective. 
 
For example, differential equation for iteration of а 
construction with a single borrowed bit is  
𝑇(𝑛) = 3𝑇 �𝑛

2
�+ O(𝑛) and this means that 𝑇(𝑛) ∈

О(𝑛log2 3) ≈ О(𝑛1.585), and not O(n). The differential 
equation for zeroed bits is 𝑇(𝑛) = 2𝑇�𝑛

2
�+ О(𝑛), which is 

better, but still gives  
𝑇(𝑛) ∈ О(𝑛 log(𝑛)) instead of O(n). 
 
To achieve a linear number of operators is necessary to be 
borrowed many more bits. 
 
n ancilla bits 
 
If there is a circuit with 2n lines, with n target lines and n 
ancilla lines, then the target lines must be incremented. 
And this must be done with at most O(n) Toffoli operators 
or less. 
 
The case with recordable bits needs only n-2 from the n 
available ancilla bits. By using the recordable bits for 
accumulation of the intersection of more and more controls 
are precisely obtained the conditions, necessary for 
updating each target bit. 
 

 
Figure 7 

The case with zeroed bits is solved by taking the solution 
with recordable bits and eliminating the previous effects. In 
other words, it is simply cleared: 
 

 
Figure 8 

This leaves only the case with n borrowed bits. 
 
The solution of this case is not at all easy to find. For it can 
be used the VanRentergem adder: 
 

 
Figure 9 

 
The VanRentergem adder takes a carry bit c, a value in 
additional code a, a value in additional code b and turns (c, 
a, b) into (c, a, a+b+c). Let's use a modified version of the 
circuit, made out of Toffoli operators instead of operators 
with controlled exchange, and to reverse the operators, so 
as to perform subtraction instead of addition: 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015                                                                      1299 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org 

 
Figure 10 

With the above widget can be subtracted a garbage carry 
bit c and a garbage value in additional code g out of the 
target value for incrementation v. 
 
On its own the subtraction seems like the wrong action to 
be taken. In the end, it mixes a bunch of garbages in the 
target. However, the trick with bitwise complement can be 
used in order to solve the problem. If the widget with 
subtraction is applied once again, but at first are switched 
the bits of g, then the target bits will be relocated from 
storing of v to storing of v-c-g to storing of 
v−c−g−(−g−1)−c=v−2c+1. By eliminating the garbage from 
g, is created +1, which must be performed! 
 
Now it is necessary to eliminate the garbage from c. Let's 
consider how v−2c+1 behaves for each possible value of с. 
When с is On, is obtained v→v−2+1=v−1, which means 
that v is decremented. When с is Off, is obtained v→v+1, 
which means that v is incremented. An increment is always 
wanted and a decrement can be easily turned into an 
increment, by surrounding it with NOT-s, but conditioned 
on с. 
 
In the end are obtained two subtractions in the style of 
VanRentergem. The garbage with a non-carry bit is 
canceled out by switching before and after one of the 
subtractions. The garbage with a carry bit is canceled out 
by pre-and post-switching of the target bits, when the carry 
bit is On. Finally, since the target value has one more bit 
than the garbage value, the highest bit needs a special 
processing. As a whole is obtained the following: 

 

Figure 11 

With these asymptotically efficient constructions with n 
ancilla bits in hand can be repaired the lack of efficiency in 
the constructions with a single bit. 
 
Putting it all together 
 
Basically in order to turn a n-bit incrementation with a 
single ancilla bit into a linear number of Toffoli operators 
or smaller, must be applied the appropriate construction 
with a single bit and then to be applied the appropriate 
construction with n borrowed bits. However, there are a 
few stipulations. 
 
First, after the construction with a single bit has been 
applied, the largest remaining operation has a size of �𝑛

2
� 

and therefore has access to at most �𝑛
2
� unaffected bits for 

borrowing. Since �𝑛
2
� can be with one of less than �𝑛

2
�, 

sometimes it is necessary to be applied the construction 
with a single bit twice before the operations to be small 
enough in order to borrow enough bits to apply the 
construction with n bits. Alternatively, since the increments 
have only one controlled NOT, which affects all relevant 
lines, that operation can be subtracted from the increment 
(reducing the size of the bit for incrementation with 1) and 
to be processed separately. 
 
Second, the constructions make (a constant number of) 
operators in controlled NOT-s in addition to the created 
increment operators. They are processed by applying the 
construction from the article for large controlled NOT-s. 
 
Third, although this construction is asymptotically 
efficient, it has a large constant coefficient. It seems that the 
n-bit incrementation turns into about 32n operators of 
Toffoli or smaller. Probably there are solutions with better 
constant coefficients. 
 
To ensure that the described construction actually works, is 
created a Python code for testing. The use of the code for 
generating the 5-bit incrementing circuit, then its breaking 
by hand, so to be fit on the page, gives: 
 

 
Figure 12 

Below are given gradually larger and larger cases, which 
are zoomed out: 
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Figure 13 

 
3. SUMMARY 

 
Given a single ancilla bit, in an unknown state that must be 
preserved, can be created cluster increment operators with 
n lines, by using O(n) operators of Toffoli or smaller. 
 
The key parts of the construction are the subtraction in the 
VanRentergem-style and the use of bitwise complements 
for conditional switching between addition and 
subtraction. 
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